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It is shown that every regular 3-valent polyhedral graph whose faces are all 5-gons and 
6-gons contains a cycle through at least 4/5 of its vertices. 

1. In t roduct ion  

Let G3(p, q) denote the family of 3-connected regular 3-valent planar graphs 
whose faces are allp-gons and q-gons, p < q,p >~ 3. Steinitz's famous theorem (see [5, 
p. 235]) guarantees the existence of convex polyhedra that are combinatorially 
equivalent to the graphs from G3 (p, q). It follows from Euler's formula for polyhe- 
dra thatp E {3, 4, 5} and that, ifp = 3, then q 4 10. 

There are many papers devoted to the study of longest cycles in graphs from 
the families G3 (p, q). For example, Goodey [3,4] has proved that all graphs from 
G3(3,6) and G3(4,6) are Hamiltonian. The families G3(3, q) for 7~<q~<10, 
G3 (4, 2k + 1) for k >t 3 and G3 (5, q) for q i> 7 contain non-Hamiltonian graphs. The 
longest cycles and, particularly, the shortness exponents and shortness coefficients 
of these families have been investigated. See, for example, Owens [8-10], Tk~6 
[11], Walther [12] and Zaks [13]. 

In this paper we consider graphs from G3 (5, 6). By Euler's formula every such 
graph has exactly twelve 5-gons. A result of Ewald [2, lemma 3.1] implies that there 
is a cycle through at least 1/3 of the vertices of any graph from G3 (5, 6). Nothing 
further seems to have been published about longest cycles in graphs from this 
family apart from the conjecture that all these graphs are Hamiltonian (see e.g. 
Zaks [13]). 
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Besides pure mathematical interest there is another reason for investigating the 
structural properties of  graphs from G3 (5, 6). In chemistry, following the synthesis 
by Kroto et al. [7] of Buckminsterfullerene (also known as icosahedral C60, soccer- 
ballene, footballene, etc.) there has been considerable interest in pure carbon mole- 
cules or carbon clusters. All clusters are convex polyhedra, have 3-valent graphs 
and contain only 5-gons and 6-gons (and, possibly, 7-gons), see Bakowies and Thiel 
[1]. Provided that there are not actually any 7-gons, the graphs are from G3(5, 6). 
We may call them generalized Buckminsterfullerene graphs. For an example of  
recent work on the properties of graphs from G3 (5, 6), see John and Mallion [6]. 

The main aim of the present paper is to prove the following: 

T H E O R E M  

Let G be an n-vertex graph from G3(5, 6). Then G contains a cycle of  length at 
least 4n/5. 

2. Proof  o f  the theorem 
Let C be a maximum cycle in G and let [C] denote its length. We call a vertex or 

edge black if it is in C and white if it is not in C. In diagrams, black vertices and edges 
are represented by large black dots and thick lines, white vertices and edges by white 
dots and marked thin lines. Unmarked vertices and unmarked thin lines represent 
vertices and edges whose membership of C has not yet been decided. 

We prove a sequence of lemmas from which the theorem follows. Most of the 
proofs are by contradiction. 

L E M M A  1 

Every white vertex is adjacent to a black vertex. 

Proof  
Suppose that not every white vertex is adjacent to a black vertex. Then there 

exists a white vertex x at distance exactly 2 from C and a minimum white path xyz  
from x to C. Since y has valency 3 only, xyz is part of the boundary of some face F 
of  G. This face may be a 5-gon xyztv or a 6-gon xyztuv, as shown in fig. 1, but in 
either case zt is black and v is white. 

When F is a 5-gon, the operation of replacing the edge tz of C by the path 
tvxyz, which we denote by tz-+ tvxyz, lengthens C. When F is a 6-gon and u is 
white, tz ~ tuvxyz lengthens C. When F is a 6-gon and u is black, utz-, '-uvxyz 
lengthens C. In each case the maximum property of C is contradicted, so the lemma 
is proved. [] 

Every black vertex has at least two black neighbours and, therefore, at most  
one white neighbour. Hence I C [ ~> n/2. 

By lemma 1, every white vertex has at least one black neighbour and at most 
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Fig. 1. P r o o f o f l e m m a  1. 

two white neighbours, so G - C has maximum valency two and is a set of  paths 
and cycles. The next two lemmas give further information on the structure of  
G - C .  

L E M M A  2 

No component  o fG - C is a cycle (compare [2, lemma 3.1]). 

Proof 
Suppose that, contrary to the lemma, G - C has a component  H that is a cycle. 

By lemma 1, H is a facial cycle. Figure 2 shows the case where H is a 6-cycle 
xyzuvw. 

Now bc is white since otherwise abcd --~ axyzuvwd would lengthen C. Hence ch 
is black. Similarly ef is black. At least one of  the edgesfg,  hg is white, otherwise a 
6-cycle cdefgh is formed. By symmetry,  we may  assume that hg is white. Now use 
hcdef-,'-hgf if fg is white (or hcdefg---~hg if fg is black) followed by 
ab --~ axyzuvwdcb and C is lengthened, a contradiction. 

When the faces shown in fig. 2 include 5-gons the argument  is similar or simpler. 
We omit the details. [] 
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Fig. 2. A white cycle. 
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L E M M A  3 

N o  component  o f G  - C is a path of  length greater than one. 

Proof  
Suppose that, contrary to the lemma, G - C has a component  that  is a path  of  

length at least 2, say x y z . . . ,  where x is one end vertex. Then the white path xyz  is 
par t  o f  the boundary  of  a face of  G. The whole boundary  is o f  the form uwxyz or 
uwxyzt, where u, w and uw are black. In the former case, wu ~ wxyzu, lengthens C. 
In the latter case C is lengthened by wu -* wxyztu (if t is white) or wut ~ wxyzt  (if 
is black, in which case ut is black). Thus we always have a contradiction.  [] 

By lemmas 2 and 3, every component  of  G - C is either an isolated vertex or a 
path of  length one. Hence every white vertex has at least two black neighbours and 
so I f l  t> 2n/3. 

We omit the easy p roof  of  the next lemma. 

L E M M A  4 

Let F be any face of  G. I f F  is a 5-gon, then there is at most  one white vertex on 
F.  I f F  is a 6-gon, then there are at most  two white vertices on F and, when there are 
two, they are in either adjacent or opposite positions. 

In order to compare  the numbers of  black and white vertices we shall now use 
the concept  of  charge. Initially every black vertex has charge 1 and there is no 
charge on white vertices. A black vertex has at most  one white neighbour. I f  it has 
one, that  neighbour is given charge 1 and, if not, the charge is shared between the 
white 2-neighbours (that is, white vertices at distance 2). I f  there are no white 
2-neighbours either, then the charge is shared between the white 3-neighbours, and 
so on. However ,  we shall not need to go further than 2-neighbours. 

Let q(x) denote the final charge on a white vertex x and q(x, z) the charge given 
to x by a black vertex z. 

L E M M A  5 

Let z be a black vertex with no white neighbours. Then z has at most  two white 
2-neighbours. 

Proof  
In fig. 3, suffixes indicate distances from z. By symmetry we may  assume that 

alz is the white edge incident at z. Then blzcl and d2ale2 are black paths. By 
lemma 4 at most  one of  the two vertices f2, g2 is white. Similarly, at most  one of  h2, 
/2 is white. The result follows. [] 
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Let x be a white vertex and z a black 2-neighbour o f x  with no white neighbours.  
Then q(x, z) = 1/2 if z has another white 2-neighbour besides x and otherwise 
q(x,z)  = 1. 

LEMMA 6 
Let x be an isolated white vertex. Then q(x) >~ 9/2. 

Proof  
At first we assume that the six faces nearest to x are all 6-gons. In fig. 4, suffixes 

indicate distances f rom x. 
Evidently q(z, al) = q(z, hi) = q(x, ci) = 1. We shall show that x has at least 

three black 2-neighbours whose neighbours are all black. There are two cases. 
Case 1 (a3, b3, c3 black). By lemma 4, d3 and e3 are not  both  white, so at least 

one of  the vertices d2, e2 has black neighbours only. Similarly for f2, g2 and h2, i2. 
Case 2 (at least one of  a3, b3, c3 white). By symmetry we may  assume that  a3 is 

white. Then g2g3, h2h3 are black edges. 
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(a) We claim that b3 and c3 are black. For  suppose that b3 is white. Then i2i3 
is black and hence c4 is black since, otherwise, h3h2cli2i3-+h3c4i3 and 
g2bl ---~g2a3h2clxbl would lengthen C. Since c4 is black, one of  the edges h3c4, i3c4 is 
black. The other one is white, since otherwise a black 6-cycle would be completed. 
By symmetry  we may assume that i3c 4 is black. Then h3h2cli2i3c4-~h3c4 and 
g2bl --~g2a3h2clxbl leave ICl unaltered but produce a white path b3i2i3, contrary  to 
lemma 3. Hence b3 is black. Similarly, c3 is black. 

(b) We claim that i 3 and f3 are black. For  suppose that i3 is white. Then c4 is 
black, since otherwise h3h2Cl i2 -+ h3c4i3i2 leaves I CI unaltered but produces a white 
path a3h2cl, contrary  to lemma 3. Since c4 is black i 3 is white, c4h3 is black. Then 
c4h3h2cli2--+c4i3i2 and g2bl--+g2a3h2clXbl lengthen C, another  contradiction. 
Hence i3 is black. Similar ly~ is black. 

All neighbours of/2 and f2 are black, so q(x, i2)>~ 1/2 and q(x,f2)>1 1/2. As in 
Case 1, q(x, d2) >/1/2 or q(x, e2) >>- 1/2. 

In both Case 1 and Case 2, q(x) 7> 3 + 3 x 1/2 = 9/2, as required. 
Now consider how the proof  must be modified when some of the six faces nearest 

to x become 5-gons. In fig. 4, any one of  these faces may  be converted into a 
5-gon by removing one of the vertices a3, b3, c3, a4, b4, c4, where to remove the vertex 
a4 (for instance) means to replace the path d3a4e3 by a single edge d3e3. 

First, suppose that we remove a3, b3 or  c3. Each of these vertices is adjacent, in 
fig. 4, to two black 2-neighbours o f x  which become adjacent to one another  when 
the vertex is removed. Thus, as far as our proof  is concerned, the removal of  a3, b3 
or c3 is equivalent to asserting that this vertex is black and hence any part  of  the 
proof  where we suppose it to be white must  simply be deleted. 

Now suppose that we remove a4, b4 or c4. In Case 1, the proof  is unaffected. In 
Case 2, the removal of  c4 simplifies the proof  that b3 and i3 are  black. In fact, when 
c4 is removed, b3 is black since otherwise h3h2cli2i 3 -~h3i3 and g2bl --+g2a3h2clXbl 
would lengthen C and /3 is black since otherwise h3h2cli2-+h3i3i2 and 
g2bl ---~g2a3h2clxbl would lengthen C. Similarly, the removal of  b4 simplifies the 
proof  that c3 and f3 are black. The removal of  a4 does not affect the proof. 

The removal of  two or more of  the vertices a3, b3, c3, a4, b4, c4 can be dealt with 
by combining the corresponding changes to the proof  suggested above. Note  that, 
when a3, b3, c3 are all removed, Case 2 disappears entirely. [] 

We need a similar result for a white vertex with a white neighbour. Here, we shall 
be satisfied with a slightly weaker result. 

LEMMA 7 
Let x be a white vertex with a white neighbour. Then q(x) >~ 4. 

Proof  
Let y be the white neighbour of  x. At first we assume that all relevant faces (see 

fig. 5) are 6-gons. Suffixes indicate distances from the nearer of  the two vertices 
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x, y. It will be sufficient to consider the contribution to q(x) from vertices that lie 
above the line xy in the diagram and are at distance 1 or 2 from x. Afterwards,  the 
p roof  can be completed by adding the contribution from vertices below xy. 

As shown, a2al c2 and b2bld2 are black paths so q(x, al ) = 1. We shall show that  
q(x, a2) + q(x, c2)/> 1. There are two cases. 

Case 1 (azb2 black). The operation alazbzbl-~alxybl leaves I CI unaltered but 
makes a2, b2 white. Hence, by lemma 4, a3, a4, b4, b3 are black. As a2b2 is black, a2a3 
and bzb3 are white and so c4a3a4b4b3 is a black path. Hence a2 has no white neigh- 
bours and no white 2-neighbours except x. Thus q(x, a2) + q(x, c2) ~> q(x, a2) = 1. 

Case 2 (a2b2 white). The edges a2a3, b2b3 are black, so a3 and b3 are black. Hence 
a2 has no white neighbours and q(x, a2)/> 1/2. We shall show that  either a2 has no 
white 2-neighbours except x or c2 has no white neighbours. 

The vertices c3, c4 are both black since otherwise one of the operations 
a3a2alc2-~ a3c4c3c2, a3a2alc2c3 -+a3c4c3, c4a3a2alc2-~ c4c3c2, followed by b2b~ 
-+ b2a2al xybl, would lengthen C. 

Next,  x3 and a4 are not  both white since otherwise c2c3 and a3c4 would be black 
and caa3a2al c2c3 " +  c4c3 followed by elg2 -+ elxal c2x3g2 would leave [C] unaltered 
but produce a white path aaa3a2, contrary to lemma 3. Hence either x3 is black and 
q(x, c2)>~l/2, or a4 is black and q(x, a2)= 1. Since q(x, a2)>>-l/2 we have 
q(x, a2) + q(x, c2)/> 1 in any case. 

By similar reasoning q(x, ex)= 1, q(x, e2)+q(x,  g2)>~l. Hence q(x)>~4, as 
required. 

It remains to consider how to the proof  must be modified when some of the rele- 
vant  faces become 5-gons. By lemma 4, the faces incident with xy cannot  be 
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5-gons. Any one o f  the faces/71, F2, F3 becomes a 5-gon if we remove (as in lemma 6) 
one o f  the vertices x3, c4, b4. 

When we remove x3, g2 becomes a neighbour o f  c2, so c2 has no white neighbours 
and q(x, c2)/> 1/2. When we remove c4, Case 1 remains unaltered (except that c4 is 
changed to c3) and, in Case 2, x3 and a4 are not both white for the simpler reason 
that, otherwise, there would be a black 5-cycle a3a2alc2c3. When we r e m o v e  b4, 
Case 1 becomes impossible because al azbzbl --+ al xybl leaves two white vertices on 
the 5-gon F3, contrary to lemma 4, while the proof  in Case 2 is unaltered. 

The removal of  two or all three o f  the vertices x3, c4, b4 is dealt with by combining 
the above changes. [] 

Since q(x) >/4 for every white vertex, [C I ~> 4n/5 and the proof  of  the theorem is 
complete. 
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